7
31
2015
2

【生成树上LCA】NOIP2013 T3货车运输

自古T3出神题!自古3面出神曲!

我觉得这次T3的题很符合我的胃口←_←

题意:给定一个图,求两点间所有路径上最小边权的最大值。

初中写只会二分答案+判断连通性(能再蠢些么= =)

看了题解:该边一定出现在最大生成树上!(如下图,蓝、绿色表示最大生成树。若所求边边(红色)不在最大生成树上,则绿边上必有所有边权必大于红边(想想Kruskal),则路径可以优化)只需求树上路径的最小边权。

于是学了欢乐的树上倍增算法(基于LCA)。

先说LCA(最近公共祖先):即找树上两点公共祖先中最近的一个。

姿势:预处理出树上第i点往上寻2^j的节点编号(dfs+伪分治),存入p[i][j]。

若询问两点a、b高度相同,则从较大的j往下枚举至0,一旦p[a][j]!=p[b][j]则两点都往上跳2^j层(即a=p[a][j],b=p[b][j]),那么最后p[a][0]即所求答案。……①

若询问两点a、b高度不同,则让较深的一点按照上述姿势往上调至相同高度。……②

辣么问题来了,求路径最小边权怎么搞。

是时候表演真正的技术了:预处理出树上第i点往上寻2^j个节点路径上的最小值,在①②往上跳的过程中同步维护整个路径最小边权,KO(BTW:树上路径长度也是这么做的)

CODE(我写得奇丑无比):

#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxm 50010
#define maxn 10010
#define INF 2000000000
using namespace std;

struct Edge
{
	int u,v,w;
};
Edge edges[maxm];
int r[maxm],n,m,f[maxn];
int GF(int x)
{
	return f[x]==x?x:f[x]=GF(f[x]);
}
int cmp(int a,int b)
{
	return edges[a].w>edges[b].w;
}
Edge Gra[maxn*2];int Size=0;
int next[maxm],first[maxn];
void AddEdge(int u,int v,int w)
{
	int m=++Size;
	Gra[m]=(Edge){u,v,w};
	next[m]=first[u];
	first[u]=m;
}
int p[maxn][15];//以i跳2^j格的点(交的时候用14也让我水过了,看来没用链卡我)
int w[maxn][15];//跳的范围内最小边权
int h[maxn];//每点深度= =
int dfs(int u)
{
	for (int i=first[u];i!=-1;i=next[i])
		if (!h[Gra[i].v])
		{
			Edge e=Gra[i];
			h[e.v]=h[u]+1;
			p[e.v][0]=u;
			w[e.v][0]=e.w;
			dfs(e.v);
		}
}
void init()
{
	for (int j=1;(1<<j)<=n;j++)
		for (int i=1;i<=n;i++)
			if (p[i][j-1]!=-1)
			{
				p[i][j]=p[p[i][j-1]][j-1];
				w[i][j]=min(w[i][j-1],w[p[i][j-1]][j-1]);
			}
}
int LCA(int a,int b)
{
	int i,ans=INF;
	if (GF(a)!=GF(b)) return -1;
	if (h[a]<h[b]) swap(a,b);
	for (i=0;(1<<i)<=h[a];i++);
	i--;
	for (int j=i;j>=0;j--)
		if (h[a]-(1<<j)>=h[b])
		{
			ans=min(ans,w[a][j]);
			a=p[a][j];

		}
	if (a==b) return ans;
	for (int j=i;j>=0;j--)
	{
		if (p[a][j]!=-1&&p[a][j]!=p[b][j])
		{
			ans=min(ans,w[a][j]);
			a=p[a][j];
			ans=min(ans,w[b][j]);
			b=p[b][j];
		}
	}
	ans=min(ans,w[a][0]);
	return min(ans,w[b][0]);
}
int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)f[i]=i;
	for (int i=1;i<=m;i++)r[i]=i;
	for (int i=1;i<=m;i++)
	{
		int u,v,w;scanf("%d%d%d",&u,&v,&w);
		edges[i]=(Edge){u,v,w};
	}
	sort(r+1,r+1+m,cmp);
	for (int i=1;i<=n;i++)
		first[i]=-1;
	for (int i=1;i<=m;i++)
	{
		Edge e=edges[r[i]];
		int x=GF(e.u),y=GF(e.v);
		if (x!=y)
		{
			f[x]=y;
			AddEdge(e.u,e.v,e.w);
			AddEdge(e.v,e.u,e.w);
		}
	}
	h[1]=1;
	dfs(1);
	init();
	int q;
	scanf("%d",&q);
	for (int i=1;i<=n;i++)
		if (!h[i]) h[i]=INF;
	for (int i=1;i<=q;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
		printf("%d\n",LCA(u,v));
	}
	return 0;
}
Category: NOIP | Tags: LCA 倍增 生成树 | Read Count: 844
UK Board Model Paper 说:
2022年8月16日 18:07

Uttarakhand Board Model Paper 2023 Class 3 Pdf Download with Answers for English Medium, Hindi Medium, Urdu Medium & Students for Small Answers, Long Answer,

Grade 5 Result dhaka 说:
2022年9月03日 01:47

Government of the People’s Republic of Bangladesh, Directorate of Primary Education (DPE), is going to announce PSC Result 2022 in student wide on 30th December 2022 for all divisional Grade 5 exam result with Ebtedayee Result 2022 for annual final terminal examinations, The Primary School Certificate Examination Result 2022 will be announced for both of General and Madhrsah students in division wise to all education board known as Prathomik Somaponi Result 2022. Grade 5 Result dhaka BoardThe DPE has successfully conducted the class 5th grade PSC and Ebtedayee Examination tests from 17th to 24th November 2022 under all education boards of Dhaka, Chittagong, Comilla, Rajshahi, Sylhet, Barisal, Jessore, Dinajpur and Madrasah Board, and the DPE Grade-5 exams are successfully conducted at all 7,194 centers across the country.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Host by is-Programmer.com | Power by Chito 1.3.3 beta | Theme: Aeros 2.0 by TheBuckmaker.com